Energy Under Strain
PBEsol
File:Si.PBEsol.Diamond-1 ML.Strain vs Cohesive Energy.png
Phonons
Tests
Vacuum
- Si.pbe-n-rrkjus_psl.1.0.0.UPF, Ecut wfc/rho = 50/500, startingwfc='atomic', celldm(1)=10.335466, kpoint: 2-2-1-1-1-0, Gamma q-point
Celldm(3)
|
1.0
|
1.2
|
1.4
|
1.6
|
1.8
|
2.0
|
2.2
|
2.4
|
2.6
|
2.8
|
3.0
|
Energy (Ry)
|
-91.05486611
|
-91.02905414
|
-90.96623064
|
-90.97347954
|
-90.97924947
|
-90.98131755
|
-90.98193937
|
-90.98209842
|
-90.98212589
|
-90.98212146
|
-90.98211064
|
Frequency (THz)
|
21.399668
|
14.956531
|
14.683791
|
14.821677
|
14.864115
|
14.871671
|
14.875238
|
14.875516
|
14.874547
|
14.876260
|
14.877172
|
|
Celldm(3)
|
3.0
|
3.2
|
3.4
|
3.6
|
3.8
|
4.0
|
4.2
|
4.4
|
4.6
|
4.8
|
5.0
|
Energy (Ry)
|
-90.98211064
|
-90.98210091
|
-90.98209100
|
-90.98208215
|
-90.98207546
|
-90.98207052
|
-90.98206569
|
-90.98206092
|
-90.98205683
|
-90.98205416
|
-90.98205135
|
Frequency (THz)
|
14.877172
|
14.875561
|
14.875605
|
14.884300
|
14.876991
|
14.876809
|
14.882501
|
14.878010
|
14.878940
|
14.879234
|
14.870053
|
→ Minimum vacuum = 6.7180529 bohr
Structure
|
Pseudopotential
|
nq1
|
nq2
|
nq3
|
Frequency (THz)
|
Time
|
Infinite Crystal
|
Si.pz-n-rrkjus_psl.1.0.0.UPF
|
4
|
4
|
4
|
14.686825
|
5010 min
|
1 Monolayer
|
*
|
*
|
*
|
*
|
*
|
*
|
K-point Mesh
Mesh Density
- Quantum ESPRESSO using PS Library 1.0 PZ RRKJ US pseudopotential with Ecut,wfc/rho = 30/300 Ry
- Unrelaxed atomic coordinates using PP-relaxed lattice parameter a = 10.708 Bohr and 1.6a of vacuum in a3 direction
- NC denotes a run that ran but did not complete successfully
-
|
Total Energy
|
X/Y Mesh
|
1 1 1
|
2 2 1
|
4 4 1
|
6 6 1
|
8 8 1
|
10 10 1
|
12 12 1
|
14 14 1
|
16 16 1
|
18 18 1
|
20 20 1
|
PBE
|
NC
|
-91.15925071
|
-90.98188148
|
-90.98096535
|
-90.98091576
|
-90.98081652
|
-90.98085760
|
-90.98086999
|
-90.98086058
|
-90.98086731
|
-90.98086589
|
LDA/PZ
|
-90.82372513
|
-90.65027160
|
-90.64955939
|
-90.64955378
|
-90.64952796
|
-90.64956158
|
-90.64958106
|
-90.64957675
|
-90.64956582
|
-90.64957273
|
-90.64957249
|
- PZ/PBE mesh testing was done with celldm(1)= 10.208773524, celldm(3)=2.0, Ecut,wfc/rho = 30/300
|
Total Energy (Ry)
|
x y z
|
* * 1
|
* * 2
|
* * 4
|
* * 6
|
* * 8
|
1 1 *
|
NC
|
NC
|
NC
|
NC
|
NC
|
2 2 *
|
-90.48534325
|
-90.48716920
|
NC
|
-90.48717819
|
-90.48717698
|
4 4 *
|
-90.50777500
|
-90.50932817
|
-90.50934385
|
-90.50934449
|
-90.50934394
|
6 6 *
|
-90.50934449
|
NC
|
NC
|
-90.50718812
|
not run
|
8 8 *
|
NC
|
not run
|
not run
|
not run
|
NC
|
Mesh Center
- Quantum ESPRESSO using PS Library 1.0 PZ RRKJ US pseudopotential with Ecut,wfc/rho = 50/500 Ry
- Relaxed atomic coordinates using PP-relaxed lattice parameter a = 10.708 Bohr and 1.6a of vacuum in a3 direction
- Smallest converged grid parameter was 2 2 2
Mesh Center Point
|
Total Energy (Ry)
|
SCF Cycles
|
0 0 0
|
-90.48716920
|
93
|
1 0 0
|
-90.52916013
|
61
|
0 0 1
|
-90.48718293
|
54
|
1 1 0
|
-90.48939869
|
38
|
1 1 1
|
-90.48939583
|
63
|
- Add 10 10 1 at different k-point grid offsets
- At best k-point grid offset with 2 2 1 and 2 2 2 k-point grids, check total energy change for celldm(3) = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, etc. until less than 0.0001 Ry
- Then, run all x x 1 at the most stable k-point grid offset until total energy changes less than 0.0001 Ry
Structure
1-ML
Modification
|
Total Energy (Ry / 8 atoms)
|
Total Force (Ry / a0 / 8 atoms)
|
ω [Γ (1-3)] (THz)
|
Bottom of Cell
|
-90.9808882393
|
0.001189
|
-1.707084
|
-0.235194
|
-0.132992
|
Centered in Cell
|
-91.05494884
|
0.000220
|
-0.317949
|
-0.195414
|
0.172351
|
Built-In Phonon
|
-91.05494922
|
0.000241
|
-0.329813
|
-0.229082
|
0.016019
|
2x2 Supercell
|
-91.05616393
|
0.000913
|
|
|
|
Build In Displacement Vector
Γ-point, lowest frequency mode
Displacement Factor
|
Total Energy (Ry / 8 atoms)
|
Total Force (Ry / a0 / 8 atoms)
|
ω [Γ (1-3)] (THz)
|
0.0
|
-91.05490108
|
0.001967
|
|
|
|
0.1
|
-91.054481
|
0.016412
|
-0.322887
|
-0.189111
|
0.340710
|
0.2
|
-91.053070
|
0.032972
|
-0.364120
|
-0.221765
|
0.371472
|
0.3
|
-91.050710
|
0.049779
|
-0.308852
|
-0.191316
|
0.326616
|
0.4
|
-91.047394
|
0.066933
|
-0.348059
|
-0.270962
|
0.367059
|
0.5
|
-91.043114
|
0.084544
|
-0.284463
|
-0.151811
|
0.320345
|
0.6
|
-91.037859
|
0.102744
|
-0.345105
|
-0.153570
|
0.498687
|
0.7
|
-91.031620
|
0.121659
|
-1.000608
|
-0.236214
|
-0.135593
|
0.8
|
-91.024383
|
0.141412
|
-1.583491
|
-0.278128
|
-0.180348
|
0.9
|
-91.016139
|
0.162127
|
-2.078362
|
-0.369162
|
-0.281689
|
1.0
|
-91.006881
|
0.183921
|
-2.543886
|
-0.341077
|
-0.267751
|
2-ML
Modification
|
Total Energy (Ry / 8 atoms)
|
Total Force (Ry / a0 / 8 atoms)
|
ω [Γ (1-3)] (THz)
|
Bottom of Cell
|
-91.118108725
|
0.000038
|
-7.411048
|
-3.947619
|
-1.719877
|
Centered in Cell
|
-91.11810858
|
0.0000405
|
-0.317949
|
-0.195414
|
0.172351
|
Volume
PBE diamond bulk 1102.9319 bohr^3 = 20.4971 Å3
Annotated Bibliography
- Pengpeng Zhang et al 2006 New J. Phys. 8 200
Page 12:"A major difference now is that the π∗ surface band introduces a high density of available electronic states in the Si bandgap, acting therefore as a sink for electrons."
Figure 4: "The existence of the surface bands results in a reduced effective bandgap (∼0.35eV in this example)between the bulk VBM of the SiNM and the bottom of the surface π∗ band."