Difference between revisions of "Silicon Slab Structural Relaxation"

From William Parker Wiki
Jump to: navigation, search
(Pair Distribution Functions)
(Relaxation Quality Parameters)
Line 64: Line 64:
 
| 10 (-0.492  -0.709  0.000)
 
| 10 (-0.492  -0.709  0.000)
 
| 1.0
 
| 1.0
|  
+
| -90.47275886
|  
+
| 4.00e-05
|  
+
| -0.050
 
|  
 
|  
 
|  
 
|  

Revision as of 21:05, 26 November 2021

Diamond

Single Layer

PBEsol

Relaxation Quality Parameters
Pair Distribution Functions

aPBEsol = 5.495 Å ; rNN, bulk, PBEsol = 2.379 Å

Step Displacement q (b1, b2, b3) Build-in Factor Total Energy (eV/atom) Total Force (eV/Å/atom) Cell Pressure (GPa) Resulting Mean ω1 (cm-1) Lowest ω (cm-1)
0 - - -90.40389544 6.90e-05 0.010 -0.493665 -63.177
1 9 (-0.526 0.254 0.000) 1.0 -90.33443035 4.50e-05 0.000 -0.718166 -59.031
2 3 (-0.001 -0.513 0.000) 1.0 -90.40389384 6.00e-05 -0.000 -0.597389 -64.901
3 9 (-0.510 0.223 0.000) 1.0 -90.39834846 4.50e-05 -0.010 0.839677 -13.822794
4 9 (-0.477 0.352 0.000) 1.0 -90.37901909 5.20e-05 -0.010 -0.181455 -42.396192
5 10 (-0.492 -0.709 0.000) 1.0 -90.47275886 4.00e-05 -0.050
Step PDF
0 Si.PBEsol.1 ML.Fd-3m.max7.PDF.png
1 Si.PBEsol.1 ML.Fd-3m.buildin1.PDF.png
2 Si.PBEsol.1 ML.Fd-3m.buildin2.PDF.png
3 Si.PBEsol.1 ML.Fd-3m.buildin3.PDF.png
4 Si.PBEsol.1 ML.Fd-3m.buildin4.PDF.png
Phonon Bands and Density of States
Step Phonons
0 Si.PBEsol.1 ML.Fd-3m.max7.buildin0.png
1 Si.PBEsol.1 ML.Fd-3m.buildin1.phonons.png
2 Si.PBEsol.1 ML.Fd-3m.buildin2.phonons.png
3 Si.PBEsol.1 ML.Fd-3m.buildin3.phonons.png
4 Si.PBEsol.1 ML.Fd-3m.buildin4.phonons.png

Relaxation Procedure

  1. Create slab using copies of bulk structure coordinates
  2. Relax slab using loose total force convergence (~10-3 Ry bohr)
  3. Vary celldm(1) by fixed perentage around loosely relaxed slab and relax each new structure to tighter total force convergence (~10-4 Ry bohr)
  4. Relax the minimum-energy structure from that step to the tightest force convergence (~10-5 Ry bohr)
  5. Vary celldm(3) around the relaxed minimum energy structure and relax the in-plane (x & y) coordinates only
  6. Fit the equation of state to these energies and volumes